Overexpression of calcium-activated potassium channels underlies cortical dysfunction in a model of PTEN-associated autism.
نویسندگان
چکیده
De novo phosphatase and tensin homolog on chromosome ten (PTEN) mutations are a cause of sporadic autism. How single-copy loss of PTEN alters neural function is not understood. Here we report that Pten haploinsufficiency increases the expression of small-conductance calcium-activated potassium channels. The resultant augmentation of this conductance increases the amplitude of the afterspike hyperpolarization, causing a decrease in intrinsic excitability. In vivo, this change in intrinsic excitability reduces evoked firing rates of cortical pyramidal neurons but does not alter receptive field tuning. The decreased in vivo firing rate is not associated with deficits in the dendritic integration of synaptic input or with changes in dendritic complexity. These findings identify calcium-activated potassium channelopathy as a cause of cortical dysfunction in the PTEN model of autism and provide potential molecular therapeutic targets.
منابع مشابه
P13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملTargeting potassium channels to treat cerebellar ataxia
Objective Purkinje neuron dysfunction is associated with cerebellar ataxia. In a mouse model of spinocerebellar ataxia type 1 (SCA1), reduced potassium channel function contributes to altered membrane excitability resulting in impaired Purkinje neuron spiking. We sought to determine the relationship between altered membrane excitability and motor dysfunction in SCA1 mice. Methods Patch-clamp ...
متن کاملCerebellar ataxia and Purkinje cell dysfunction caused by Ca2+-activated K+ channel deficiency.
Malfunctions of potassium channels are increasingly implicated as causes of neurological disorders. However, the functional roles of the large-conductance voltage- and Ca(2+)-activated K(+) channel (BK channel), a unique calcium, and voltage-activated potassium channel type have remained elusive. Here we report that mice lacking BK channels (BK(-/-)) show cerebellar dysfunction in the form of a...
متن کاملReduced activity of SKCa and Na-K ATPase underlies the accelerated impairment of EDH-type relaxations in mesenteric arteries of aging spontaneously hypertensive rats
Aging is accompanied by endothelial dysfunction due to reduced bioavailability of nitric oxide (NO) and/or reduced endothelium-dependent hyperpolarizations (EDH). This study examines the hypothesis that hypertension aggravates the impairment of EDH-type relaxation due to aging. EDH-type relaxations were studied in superior mesenteric arteries isolated from Wistar Kyoto (WKY) and spontaneously h...
متن کاملCalcium-activated potassium channels are selectively coupled to P/Q-type calcium channels in cerebellar Purkinje neurons.
Cerebellar Purkinje neurons fire spontaneously in the absence of synaptic transmission. P/Q-type voltage-gated calcium channels and calcium-activated potassium channels are required for normal spontaneous activity. Blocking P/Q-type calcium channels paradoxically mimics the effects of blocking calcium-activated potassium channels. Thus, an important function of the P/Q-type calcium channels is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 45 شماره
صفحات -
تاریخ انتشار 2013